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Basic proportions are defined for setting a computation scheme for the determina- 

tion of aerodynamic characteristics of an aircraft on a computer. A schematic 
representation of an aircraft by a system of reference elements is described and 
substantiated. The general nonstationary linear problem of aerodynamics and hy- 
drodynamics is reduced to a set of canonical e -problems that are solved indepen- 
dently. General properties of linear characteristics (loads, normal forces, and mo- 
ments) are established. Integral relationships of the convolution kind which yield 

explicit formulas for these characteristics in terms of related transition functions 

and laws of kinematic parameter variations with time ej (T) are derived. A num- 
ber of general theorems, including the generalization of the invertibility theorem, 

are proved. Exact formulas are established for transition functions at the initial 

instant of time. 

1. The general non8trtfonrry linear problem, Let us consider the 
unsteady motion and the deformations of an aircraft in a perturbed continuous medium. 

We attach to the aircraft a conventional Cartesian system of coordinates whose OX -axis 
is directed forward along the aircraft axis and the 0~ -axis directed to the right over the 

wing span (Fig. I). Let U0 be the mean velocity of the (coordinate) origin 0, and W, 
W+, WA and W6 be the velocity vectors of perturbations induced by the aircraft, trans- 
fer, gusts of the medium, and aircraft surface deformations, respectively. We denote the 
vector of absolute angular velocity by 52 and time by t (t = 0 is the instant of unsta- 
ble processes onset), and introduce the dimensionless quantities 

where b is a characteristic linear dimension. 
Let uU,, be the varying velocity component of origin 0, and a and fi the angles of 

attack and of the side slip, respectively. For projections of the transfer velocity at any 
point of the aircraft surface we then have 
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w,* = (1 + u) cos u cos p + co& - o,q, 
iJo - = - (1 + u) sin 2 cm p - L2”* 

w** 
wJi’+ ~zs? -&y- = (l+u)sinP-wg--$ 

The aircraft motion, deformations of its surface and gust velocities of the medium are 

assumed to be known. Values of perturbed parameters of gas, in the first instance the 
aerodynamic loads,are to be determined, Usually these can be determined on the assum- 
ption of a perfect medium. Condition of impenetrability apply to the aircraft surface. 
It is of the form 

(1.1) 

where n is the unit vector of an outward normal to the surface of the body. 

Fig. 1 

Conditions at infinity, at discontinuity 
surfaces, at the free sheet, at separation 
boundaries, and the hypothesis of Chaply- 

gin- Zhukovskii must be satisfied. 

Below, the general nonstationary linear 
problem is considered, in which the per- 
turbations induced by the aircraft are as- 
sumed small in comparison with parame- 

ters of the unperturbed medium. The flow 

around the aircraft is conveniently defined 

with the use of gasdynamic properties that 
satisfy the equation of continuity outside 
the aircraft and are applied at reference 
planes. The latter are located closely to 
the related part of the aircraft surface. 

The basic scheme of an aircraft is shown 

in Fig. 1. The plane reference elements, 

which can be parallel to the Ox -axis, are 

shown there by solid lines. Modifications 

of this scheme are possible ; for instance, 
additional reference planes must be intro- 

duced for detailed investigation of flow 

near the wing-fuselage joint, We write 

the equation of a plane reference element 
i as 

ai $ 11 cos (ny),i -I_ 5 COS (nz)oi = 0 

By the linearization condition from 
(1. 1) we have at the surface of the aircraft 

from which we obtain the most important case 

Let 1 and 2 denote different sides of each reference element, with the positive normal 
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noi directed from side 1 to side 2. We write the equations forthe i -th aircraft part and 
its deformation (including deflections of control surfaces) in the form 

The thickness of aircraft parts is defined by the sum of deformations at different sides 
of the reference plane, and their curvature by the half-difference of these. We introduce 

the following functions of the aircraft thickness and curvature 

The dimensionless velocities of gusts are expressed in a similar form 

(I. 3) 

In linear problems the velocity field disturbed by a body can be considered to be po- 
tential. Within acceptable accuracy shocks coincide with Mach lines whose position 

relative to the body remain unchanged. The vortex trail running off the aircraft surface 

can be positioned in the related reference elements, and the boundary condition can be 

related to the nearest side of the reference plane. All this makes it possible to reduce 
the general problem to a number of particular conventional ones that can be solved in- 

dependently of each other. 

We denote by ej, j = 1,2,3, . . . the set of basic dimensionless kinematic parameters 
that define the motion and deformation of the aircraft and the gusts of the medium. If 
sj* denotes their characteristic values, the dimensionless potential and aerodynamic 
loads on the element i can be represented by 

(1.4) 

where (pEj and Apc.i are solutions of the particular problem in which all kinematic para- 

meters, except ej, Hre zero. Each function cp satisfies outside the aircraft the same 
equation as ‘p (a0 is the speed of sound in the?urperturbed gas) 

Conditions at the vortex sheet are conveniently written in the form [l] 

A(P,~ (E, 1, 6, 7) = A(pq (4*, 11. 5, r*), Aqzj = r&p - (Prjsr z* = r -(5’- el 

It links the potential difference on the opposite sides of the vortex sheet at two points: 

immediately behind the reference plane N*(t*, q, 5) and downstream of it at any point 

N (5, q, 0 with the same values of q and t (Fig. 1). 
To satisfy the Chaplygin-Zhukovskii condition at the trailing edges of reference planes 

it is necessary to stipulate continuity of velocities a,+ ! + 8tpej ! fq and &pSj ,I at. 
in the vicinity of these. For M > 1 and subsonic velocitres at trailing edges, it is suf- 
ficient if functions (psi themselves are continuous [l]. 

The dimensionless loads are determined by the Cauchy-Lagrange integral which in 
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the linear form is written as 

Conditions at infinity reduce to the requirement that the velocities and pressures dis- 

tributed by the aircraft, as well as functions cplj , vanish far ahead of the latter (for 

M > i , beyond the influence region). 
Boundary conditions for any point (5, q, I;), belonging to a reference element can be 

represented in the form 

a(pCj 'j (%I - = * “ij (4, q, C), 

@Cj @Cj wj 
7 = - 

(1.5) 
ano’ ej anoZ aq 

cos :ny)oi+ ap cos (ne)o’ 

where Fejf (4, q, t) ace known functions expressed in terms of the aircraft geometry and 

of specified functions appearing in (1.2) and (1.3) 

FUi = 0, Fai = COS (ny)oi, E‘@* = COS (nz)Oi, $& = q COS (nZ)Oi - 

. . 
<cos(ny)o', F' 

% 
= - E;cos(nz)o' 

fiiz = <Cos(ny)o*, I;kk = 0, P;= - w~*cos(n?/)oi, "1; = -ww,kAcos(nz)"i... 

x 

Since the boundary condition (1.1) contains deformation rates, hence the set of basic 

kinematic parameters ej includes also derivatives with respect to T S,‘i (z) 

ei (9 E {a (T), B (4, o,,~,~ (4, AYk (4, Azk (4, S,Y% 6,‘i (4) 

The conditions of linearization of the problem ace of the form 

2. Integral reprerentotion. Let us consider the somewhat particular canoni- 

cal problem of the so-called transition function of the potential [T,~ (E, q, 5, r)]. Its 
conditions differ from those indicated above only by another dependence of the boundacy 

condition on time 
a icpzi] 
v = 1 (z) “1, (L q* 0, 

0, z<O 

an0' 
1 (z) = ( 

(2.1) 
1, T>O 

We introduce in the analysis the nonstationary pact of the transition function, separating 

the limit value for z ---f 03. For the aerodynamic load let us, for example, set 

IpiEj (4, 71, 5, z) = [APEX* (b rlv 5, ~11 - b+ (4, q, 6) (2.2) 

where Apicj (4, q, 5) is a stationary aerodynamic derivative. 
Using Duhamel’s integral, as was done in [l] for a wing, we can readily obtain the ge- 

neral integral formula for the load. Let for T < 0 the kinematic parameter Ej (T) = o , 
and for z = u jumps to ej (0), and after that varies continuously. Then 

The first term in the right-hand pact of (2.3) is the mathematical expression of the 
stationacity hypothesis, while the second represents the correction due to the nonstation- 
acity of flow around a body. The integral in the right-hand pact of (2.3) together with 
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the one but last term provides the explicit expression of the effect of nonstationary flow 

for continuous variation of the kinematic parameter. In a compressible medium (M > 0) 
when the propagation velocity of perturbations is finite, the third term vanishes. In an 
incompressible fluid (M = 0) the speed of sound is infinite, and the variation of sj (r) 
is accompanied by the emergence of pulses of the delta-function kind. The third term 
appeared as the consequence of isolation of the indicated singularity in the integrand. 

The load A*pej is obtained by solving the Ej-prObkRl for a noncirculation flow past 

the aircraft. 
Integral representations similar to (2.3) are also valid for other linear aerodynamic 

characteristics, Formulas (‘2.3) together with ( 1.4) yield explicit expressions of (the de- 

pendence of) the indicated characteristics on the previous history of flow (on the laws 

of kinematic parameter variation with time), It is important that in applications to 

flight dynamics, aeroelasticity. etc. it is not necessary to know the laws of ej (r) in order 
to determine Api’j, A*$ , f,,‘i and similar functions [‘2, 31. 

If the kinematic parameters vary according to the harmonic law sj (z)= sj*coa(pj*r + 

3)) , then the loads and other linear characteristics are expressed in terms of aerodyna- 
mic derivatives independent of time 

The integral formulas are in that case transformed to 

+ .* 

At subsonic velocities at which the transition process is of an asymptotic character 

7i* = co. 
The derived formulas permit a strict closure of linear equations of flight dynamics 

and aeroelasticity [2. 31 and materially reduce the volume of theoretical and experimen- 
tal investigations in aerodynamics [l] , 

8, E x a c t 80 lu t i on I, Let us consider a stepwise variation of the boundary con- 

dition with respect to time (2.3). At the initial instant of the transition process (z > 0, 
T - 0) each element of the aircraft surface generates ~rturbatio~ independently ofone 

another; owing to the lag in the propagation of these in a compressible medium, Hence 

all assumptions on which the piston theory is based are strictly satisfied, and that theory 
yields exact values for transition functions when z + 0 El]. 

Let wi (E, n, 5) be the velocity imparted pulse-like to the gas at t = 0 at any point 
(El n, 6) of the reference plane 1. The related perturbed pressure is then defined by 
formula [l] 

2 203 (41 % 5) PacU02 
iP,‘fE,% 6Al=rt:m~ u. ’ 9, =2 

where the sign depends on whether a compression (the plus sign) or rarefaction (the mi- 
nus sign) flow is considered, For the chosen direction of the normal we can write 
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with allowance for (1.4) and (1.5) from this we obtain 

[AP;~ (4, 9.1 t;, 011 = - & “ij (5, n, I) 

Integrating these formulas, we readily obtain initial values of transition functions for 
the over-all characteristics, 

It will be seen that the second limit value of the transition function (for t -+ CO) is 

the same as the stationary value of the related aerodynamic derivative 

[AP:~ (4, rl, 5, m)I = A$ (4, v 0, A,~lf(Et 7, 5) zz API’(E. tl* 51 pj*) lpj*a 

4. Gensrrl theorem&, General theorems help to establish a rational computa- 

tion scheme for a systematic application of numerical methods, and provide important 
means for checking the correctness of computations and the exactness of results. Below 

we present a number of theorems that are important from that point of view. 
The integral formulas (2.3) and (2.4) are used for proving Theorems 1 - 4. 
Theorem 1. The momentum. The momentum of the nonstationary part of 

the transition function of any linear characteristic throughout the time of a transition 
process in a compressible medium is equal to the related aerodynamic derivative with 

a dot for pj* -Y 0. In an incompressible medium it is equal to the difference of such de- 

rivatives for circulation and circulationless flows past a body. 

For loads we have [l , 43 

Note. Strictly speaking, the theorem is proved on the assumption that the momentum 
is finite. For wings of infinite span and subsonic velocities integrals (4.1) are usually 

divergent. Thus in an incompressible medium, when exact solutions for a slender profile 
exist, the nons~tiona~ part od the transition function for considerable r decreases as 
1/ 7. However in all these cases the aerodynamic derivatives with a dot also become 

infinite for Pj* + 0. Hence equality (4.1) is also satisfied here. 

Theorem 2. The aerodynamic derivative without a dot, For very 
high values of pj* the aerodynamic derivatives with respect to sj tend to values that 

correspond to transition functions at the instant of the transition process onset. For an 

incompressible medium the continuous part of the transition function is to be used. 
For aerodynamic loads the theorem is of the form 

A$ (E, q, 6, ~0) = [A$ (5, rl, f, o)] 

Theorem 3. The aerodynamic derivative with a dot. For very con- 

siderable p* the aerodynamic derivatives with respect to ej’ tend to values of the cir- 
culation-free derivatives, For a compressible medium the mdicated limit values are 

zero. 
For aerodynamic loads the theorem is of the form 

A$ (4, 9, 5, 00) = uA*psj (& 7), 5) 
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Theorem 4. Mean value. If variation of the kinematic parameter is periodic 

of period TV, the mean integral value of any linear nonstationary characteristic during 
period aT is equal to the product of the stationary derivative by the mean integralvalue 
of the kinematic parameter during that period. 

For continuously varying ej (7) the theorem for aerodynamic load is of the form 

The theorem is readily extended to the case in which function Ej (T) has a finite 
number of discontinuities of the first kind during one period. 

Theorem 5. Reversibility. This theorem establishes an integral relationship 

between boundary conditions and the corresponding to these aerodynamic loads on an 
aircraft in direct or inverted motion with respect to velocity U, . The proposed aircraft 
schematization and the related formulation of the problem described in Sect. 1 makes 
it possible to extend the theorem on reversibility to the considered case, as was done in 

PI. 
We denote by ‘p* (4, q, 5,~) that part of the velocity potential whose normal veloci- 

ties continuously vary at passage through the reference planes. Then for any arbitrary 
functions et (T) we have 

1 

21s 4, 
i ai 

s doi = xc\ Api_ 5 doi 
i ii 

OZ 
(4.2) 

where oi is the dimensionless area of the reference element i, and the subscripts plus 

and minus relate to the direct and inverted motions, respectively. 

6. Corollrrie8 of the rcverrfbility theorem. Equality(4.2) yields 
important formulas for over-all characteristics. We shall use conventional attached sys- 

tems of coordinates for both direct and inverted motions in which 

E+ = -E-* rl+ = q-3 5+= -6-, 0% (ny)o+i = cos (ny)o_i, cos (nz)o+i = -cos (n&i 

We introduce coefficients of the normal and side forces and moments relative to the 

attached ‘axes 

where s is a characteristic area. 

Using formula (4.2) with allowance for (1.4) - (1.6), we establish the relation bet- 
ween the characteristics of a rigid aircraft in direct and inverted motions. If the kine- 
matic parameters vary according to any arbitrary law, then 

cycl+ (r) = Cya_ (z), c*p+ (Q = c,p_ (r) (5.1) 

If the laws of variation of the considered kinematic parameters for direct and inverted 

motions are the same, i.e. Ej+ (T) = et- (z), we have the following equalities: 

(5.2) 
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m roy+ (<I = - mvul*- (*) 

For an aircraft symmetric with respect to the 0s~ -plane some of these coefficients 
are zero. The equalities (5.1) and (5.2) are valid when the subscripts plus and minus 
are interchanged. Hence all linear over-all coefficients for a rigid aircraft moving in 

a straight line in a quiescent medium are defined by characteristics of inverse motion 

for the same number M. Similar equalities hold also for the coefficients of aerodyna- 
mic derivatives. 

The reversibility theorem makes possible a simplification of computation of forces 

and moments induced by changes of curvature of each aircraft part i, since from (4.2) 

it is possible to obtain [l] 

+,s~+=\\Q:_(~)+$, ~ts,.~=-SS~~~_f8,+ds~ (5.3) 

Oi Ei 

Of ii- 

It will be seen from (5.3) that for determining any of the indicated characteristics it 
is not necessary to consider each time a new problem of aerodynamics. It is sufficient 
to solve the a-, j3- and ox,,,,,-problems in inverse motion and thus reduce the con- 

sidered problem to the computation of integrals. 
The proposed aircraft schematization has proved to be highly effective in practice by 

allowing to comparatively simply generalize the numerical methods originally developed 

for wings [l]. It proves fairly economic, and in several instances suitable for using on a 

computer of average capacity. Systematic computations based on this method are in 
satisfactory agreement with related experimental data throughout the existing range of 

actual flight numbers M, as long as the linear dependence of aerodynamic characteris- 

tics on Ed are maintained. The presented above exact formulas and theorems have helped 
to create a reliable control system for numerical calculations on a computer and to 

reduce their volume. 
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